Morg1 heterozygous deficiency ameliorates hypoxia-induced acute renal injury.
نویسندگان
چکیده
Acute kidney injury is a common complication of critically ill patients and may occur as a result of various factors and coexisting previous illnesses. Some pathophysiological responses seen in critical illness can be similar to the human physiological response to extreme environmental challenges, such as hypoxia from reduced oxygen availability at high altitudes (systemic hypoxia). Due to oxygen deficiency, mammalian cells activate the transcriptional factor hypoxia-inducible factor (HIF); its degradation is regulated by prolyl hydroxylase 3 (PHD3) in interaction with the scaffold protein MAPK organizer 1 (Morg1). While homozygous Morg1(-/-) mice are embryonically lethal, the kidneys of heterozygous Morg1(+/-) mice reveal elevated HIF protein levels and increased serum erythropoietin compared with wild-type Morg1(+/+) mice. In this study, we exposed wild-type and Morg1(+/-) mice to 10% oxygen in a hypoxic chamber for 3 days. This reduced oxygen concentration leads to a deterioration of renal function, an increase in renal inflammation, and significantly more tubular damage and apoptosis in the kidneys of wild-type (Morg1(+/+)) mice. In sharp contrast, Morg1(+/-) kidneys were protected against systemic hypoxia. They show significantly less renal lesions, reduced or no inflammation, and less tubular damage and apoptosis. Thus short-term systemic and subsequently renal hypoxia which may occur in many patients in the intensive care unit induces in wild-type mice renal injury, which is ameliorated by Morg1 deficiency. Our findings suggest that therapeutical manipulation of Morg1 may be an interesting novel target to prevent hypoxia-associated renal damage.
منابع مشابه
CALL FOR PAPERS Renal Hypoxia Morg1 heterozygous deficiency ameliorates hypoxia-induced acute renal injury
Loeffler I, Wolf G. Morg1 heterozygous deficiency ameliorates hypoxia-induced acute renal injury. Am J Physiol Renal Physiol 308: F511–F521, 2015. First published December 30, 2014; doi:10.1152/ajprenal.00236.2014.—Acute kidney injury is a common complication of critically ill patients and may occur as a result of various factors and coexisting previous illnesses. Some pathophysiological respon...
متن کاملMORG1+/− mice are protected from histological renal damage and inflammation in a murine model of endotoxemia
BACKGROUND The MAPK-organizer 1 (MORG1) play a scaffold function in the MAPK and/or the PHD3 signalling paths. Recently, we reported that MORG1+/- mice are protected from renal injury induced by systemic hypoxia and acute renal ischemia-reperfusion injury via increased hypoxia-inducible factors (HIFs). Here, we explore whether MORG1 heterozygosity could attenuate renal injury in a murine model ...
متن کاملGlyoxalase I overexpression ameliorates renal ischemia-reperfusion injury in rats.
Methylglyoxal (MG), a highly reactive carbonyl compound generated by carbohydrate oxidation and glycolysis, is the major precursor of protein glycation and induces cytotoxicity leading to apoptosis. Although recent studies have emphasized that MG accumulates in not only chronic oxidative stress-related diseases but also acute hypoxic conditions, the pathogenic contribution of MG in acute diseas...
متن کاملInduction of renoprotective gene expression by cobalt ameliorates ischemic injury of the kidney in rats.
Hypoxia in the tubulointerstitium has been thought to play pivotal roles in the pathophysiology of acute renal failure and the progression of chronic kidney disease. Pre-induction of hypoxia-inducible and renoprotective gene expression may protect subsequent ischemic injury. This study evaluated the efficacy of cobalt, which inhibits HIF-1 degradation and increases the expression level of hypox...
متن کاملSumatriptan ameliorates renal injury induced by cisplatin in mice
Objective(s): Cisplatin (Cis) is an anticancer compound, which is used for the treatment of various cancers. Sumatriptan (Suma) is a selective agonist of 5-hydroxytryptamine 1B/1D (5HT1B/1D) receptor, which is prescribed for the management of migraine. It is well-established that Suma has anti-inflammatory and antioxidant properties. We have explored the protective effe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 308 6 شماره
صفحات -
تاریخ انتشار 2015